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ON THE HAMILTON-OSTROGRADSKII PRINCIPLE IN THE CASE 
OF IMPULSIVE MOTIONS OF DYNAMIC SYSTEMS* 

V.A. SINITSYN 

Motion of dynamic systems described by the Hamilton equation and acted upon by the 
generalized impulsive forces where the impulses have a potential, is studied. The 
equations of motion are obtained in this case from the condition that the functional 
of the variational Bolza problem in which the integral part represents aHamiltonian- 
type action, is stationary. It is shown that when the impulses are potential, the 
integral Poincarg-Cartan invariant occurs. Application of the results obtained to 
the study of the motion of natural systems with discontinuities in the generalized 
impulses caused by instantaneous changes in the generalized potential, is discussed. 

1. Let the motion of a dynamic system be described by the following Hamilton equations: 

dqi an 
x=---’ api 

$=-g-.(& (i=l,...,n) (1.1) 

where H is the Hamilton function of the dynamic system, qi,pi(i-1,. .,n) are the canonical 
variables and Qi denote the generalized impulsive forces. We denote by S the impulsesofthe 
generalized forces over the time of impact z (the generalized impulses) 

In the presence of the action of instantaneous impulses the equations of impulsive motion be- 
come, in accordance with (1.1) and (1.2), 

qi+ - qi- = 0, pi+ -pi- ~m~m St (i 1, . . ., n) (1.3) 

where the plus and minus signs denote the values of the relevant variable before and afterthe 
impulse. 

We known that the motion of the system (1.1) over the time intervals during which the 
impulsive forces Qi are absent, can be regarded as a continuous sequence of contact transform- 
ations generated by the function H. Following this, we shall impose on the generalized im- 
pulses the constraints under which the equations of impulsive motion (1.3) become the canonical 
transformations of the variables qi and pi 

qi+ L qi-, pi+ 1 pi- + si (i = 1. . ., n) (1.4) 

The necessary and sufficient conditions for the transformation to be canonical are /l/, 
that the Lagrange brackets satisfy the following relations: 

[qi-qk-l = O> [Pi-Pk-1 = 0, [qi-pk-1 = c&k (1.5) 

where c is the valency of the canonical transformation and Sik is the Kronecker delta. 
Let us write the Lagrange brackets for the transformation (1.4) 

dS, 
[qi-qr-] = ag - > , [pi-pk-1 = 0, 

as, 

k z 
[qi-pk-1 = bk + apk- (1.6) 

From the condition (1.5) it follows for the relations (1.6) that the transformation (1.4) will 
be canonical if the impulses of the generalized forces satisfy the relations 

-g+$$=o (i,k=l,..., n) (1.7) 
k 

+o (i#k), 1+g+ (i = k) 
k 
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Conditions (1.7) imposed on the impulses S1 willofcourse hold if they are written intheform 

St = (C - i)Pi- + pi ((h-7 * * *I %-I tl + Ct (1.8) 

with af71 I aq*- = a& I aq-8 (k, i = 1, . 1 .z 3 Here c1 are constants determined by the conditions 
(see below) used to define the moment of impulse. 

When c = 1, (from now on we shall only discuss the impulsive motions corresponding to 
univalent canonical transformations), the impulses are determined by the function II which 

shall be called the impulse potential.. Since the impulse field (1.8) is formed as the result 
of superposition of two fields , we shall also separate from tI the terms linearly dependent 
on Qr(i=l, . . ..n) and t 

IT=--&-- (1.9) 

Using the potential n, we find the impulses in the same manner as the forces of the 

potential force field 
S[ = -arI I aq;- (i = 1, . . ., 72.) U.10) 

but the impulse field differs in the fact that its action is localized in time, i.e. aninstan- 
taneous application and removal of the field takes place. 

Taking (1.9) into account, we write the generating function K of the canonical trans- 
formation (1.4) in the form 

R= $ Pi%Qi--k rI &J1-, 'I 8, %z-,t) (1.11) 
i=I 

Indeed, the generating function (1.11) leads to a transformation corresponding to the impul- 
sive motion (1.4) 

$$ = pi+ Jr -&+ pi-, $&pi-==q++ (iii, 0. .) n) (1.12) 

H+=a-+ $x‘+$ 

where the independent variables are gj-,pi+ (i = 1. * * .* A. 
We note that a certain characteristic X @, q.' tf of the dynamic process varies in the im- 

pulisve motion in questFon in such a manner, that the following relation holds forthePoisson 
brackets /l/ (XH)- = (XH)+. In particular, the integral independent of time is preserved. 

2. We shall show that in the case of the potential impulse field acting on a realmotion 
of a dynamic system, the condition of stationarity holds for the functional constructedinthe 
form of a sum of the function a and the Hamiltonian action. The following parameters arefix- 
ed: the initial and final instant of time t, and fl, the initial and final stateofthesystem, 
the generalized coordinates (not necessarily all of them), and (or) the instant of the applic- 
ation of the impulses. 

An impulsive motion described by the generating function (1.1) begins at the instant of 
time f-. We denote by L the Lagrange function and introduce the functional 

J = - J.&l Q$h-2 . . ..q~-.t-)+iLat+~Lat 
I* t+ 

The instantaneous action of the impulse under which the generalized coordinates remainunchang- 
ed as well as fixing certain generalized coordinates and, possibly, the time of application 
of the impulse, lead to the following relations: 

@br =cr: -qi-=o @=I,...,n), rD,,l=t+-t-=O 

(D~=q~._~-ar+~=0 (Z=n+2 )..., p<Zn+f), 
cDI,=t---c&j=0 

f2.2) 

where aa (s = 0,1, . . ., p - rz - I) are fixed constants. 
The problem of determining the conditions for the minimum of the functional J (Z.l)under 

the constraints (2.21, represents a discontinuous variational problem /2/. The necessary con- 
dition of stationarity of the functional ma the subsequent passage to canonical variables 
@i =aL)Ia (dqf/dt)) yield the equations (1.11 on the intervals on which the inpulses are absent 
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(Qi = 0) and the relations 

where pg (1 = 0, 1, ..,,p) are undetermined constant multipliers. 
Eliminating from (2.3) the undertermined multipliers pi (E = 1, . . ..n 4 I), we obtain 

V.A. Sinitsyn 

pi+ = pi-- $5+p,+,+i (i=1,...,12), 

l&H-i-+-i’,, 

(2.4) 

Comparing (2.4) and (1.12) we see that the constants Ci(i = O,l,...,n) in (1.9) should be chos- 
en equal to the corresponding undetermined multipliers, i.e. 

ci = &+I++ (i = 1, . . ., P-G--‘%), Ei=O when i>p-n-t (2.5) 

If the time t- is not fixed, then co = 6 must also be included. 
Thus we see that the necessary condition of the stationarity of the functional I holds on 

the real motion of a dynamic system under the conditions of the Hamilton-Ostrogradskii prin- 
ciple when acted upon by the potential impulses (1.10) 

U=O, I=--n+w, %jLl+jT,& 
to a+ 

where w is the Hamiltonian action. 
To find the constants ci(i=@i,.. ., n) appearing in the function Il, we use the second 

group of the equations of (2.2) and conditions (2.5). The assertion of. the Hamilton- 
Ostrogradskii principle extends naturally to the case of a finite (fixed) number of momentsof 
the action of instantaneous impulses with the potential of the form (1.9). 

3. It is clear that in the case of potential impulses the system (1.1) has an integral 
Poinca&-Cartan invariant. With this in mind we shall consider an extended (2n -i_ l)-dimension- 
al phase space of variables 41, pi and It. We choose in this space a closed tube of straight 
paths with the contour Co defining the initial state of the system at the time ~IJ. We draw 

a curve C- enveloping the tube and coming in contact with every generatrix once. The contour 
c- characterizes the state of the system before the impact and is, generally speaking, arbit- 
rary, since the conditions determining the instant of application of the impulses can be 

specified in various ways. Assuming that the transformation (1.4) is single-valued, we shall 
supplement it with the equation tt = t- (instantaneity of the impulse) and construct the con- 
tour C+. When the system is set in motion, the contour defines a new tube of straight paths, 
and we produce on it an arbitrary closed contour C1 enveloping the tube. 

The two tubes obtained intersect in the subspace qr (i =_I,..., n),t. For each tubewehave 
the integral Poincarg-Cartan invariants /l/. 

Let us denote by Wrand W, the Hamilton actions along the generatrices ofthetubesfrom 
Co to C-and from @to C' 

w1 = ‘f’ L at, we = ’ ‘(f) L at, L= 
Yq 

pi~-_fj 

t.(a) &) 

Here L is the Lagrange function written in terms of the canonical variables, and a is a para- 
meter used to represent the equations of the curves in the form 

qi = qiw, pi = Pi (4 (i = 1, . . ., 4, t = t (a) 
We have, for any a/l/ 

8t-V,=[~piBqiUW6t];7 8W%=/~p,6~i-H8t]: 

Let us find the sum of SW, and 6 W,, with (2.2) taken into account 

6W =6WI + 6W.Z = [x PjSqi - H&t]: - 7 (pi+ - pi-) sqi- + (Ii+ - fi-) 6t-, @qi- = 6q,f, &- = w: 
(3.1) 

1 



On the Hamilton-Ostrogradskii principle 359 

Substituting the equations (1.12) into (3.1) and integrating with respect to a, we obtainthe 
following expressions for the contours Co and C': 

CF ppsq, - mt] = 
Q Ii 

[up& -mt] 
I 

(3.2) 

Thus we see that the value of the integral Poincar&-Cartan invariant is preserved when the 
phase coordinates of the given type undergo discontinuities. 

As an example of a system with discontinuities in the phase coordinates we shall consider 
the instant of transition of a natuxal system from one region of the state space to another 
region with different generalized potentials. The generalized potential is given (see e.g./l/) 
by an expression of the form 

vjq, ,..., qn,-g- )..., +)=gAi$+A, 
i=1 

where Ai (i = &I, . . . . n) are functions ofthegeneralised coordinates and time t. 
The generalized impulses are given by the relations 

(T is the kinetic energy) from which it follows that the first order discontinuities in the 
functions Ailead to discontinuities in the generalized impulses. The instant of inStantan- 
eous change in the generalized potential is characterized by the conditions 

Pi+ - pi- = -Aj+ + Ai- (i = 1, . . ., n) 

If a function rX(ql, . . ..p.,t) exists for the differences in the right-hand sides of these equa- 
tions and is such that 

Aj--Ai+=an/agj (i=I,...,?Z) 

then all previous arguments and conclusions hold. 
We find that not only the integral invariant, but also the generalised forces and hence 

other mechanical quantities, are invariant under the transformation of the generalized poten- 
tial in question. Using the terminology employed in the field theory, we shall call the 
function A0 the scalar potential and (Al, . . ..A.)'the vector potential. The resulting non- 
uniqueness of the potentials enables us to choose them in such a manner that the scalar poten- 
tial vanishes. To do this, it is sufficient that the condition 

A,-8II/c3t=O 

holds (when the action is impulsive, the condition can be fulfilled directly after the impulse 
is terminated). 

The property shown above is a generalization of the property known in the field theory/3/ 
as the gage (or gradient) invariance of the physical quantities under the same transformation 
of the Lorenzian force field potential /l/. 

In conclusion we note that the role of the scalar and vector potential can be played by 
the terms of zero form and by the set of the coefficients of linear form relating to the gen- 
eralized velocities, in the expression for the Lagrangian function of the systems with non- 
stationary constraints. 
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